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Abstract-The criteria governing the transition from the conduction regime to the transverse roll regime 
in a vertical infinite fluid layer are found by means of a power series method. The calculated values are 
shown to be in agreement with previously published results. Findings concerning the variation of the Gr, 

and c(, with Pr are presented. An anomalous behaviour was found at Pr = 1.75. 

NOMENCLATURE 

A mnr boundary condition matrix; 

a,,, b,,c,,d,, Galerkin method constants ; 
b,,c,, power series method constants; 

BknrCk,,, particular solution vectors; 

D, d/dz ; 

9, acceleration of gravity; 
F, G, C,,,S,, Galerkin method functions ; 
Gr, Grashof number, g/3ATH3/v2 ; 

G”> general solution vector; 

H, spacing between plates; 

N, number of terms in a series; 

PY even part of 8; 

Pr, Prandtl number, V/K; 

43 odd part of 0; 

.\-,Y,Z, spatial coordinates ; 
s, even part of W; 

t, odd part of W; 

T, temperature ; 

T,, reference temperature; 
u,u,w, velocities; 

K functional dependence of Won z. 

Greek symbols 

% spatial wavenumber; 

B? thermal expansion coefficient ; 
AT temperature difference of plates; 

0, functional dependence of Ton z; 

K, thermal diffusivity ; 
&,P,,,$,,w,, Galerkin method constants; 

;;? 

kinematic viscosity; 
streamfunction. 

Subscript 

C, critical condition. 

INTRODUCTION 

X 

-H- 

FIG. 1. Problem configuration. 

distance H, and situated parallel to the gravity 
vector, g. The temperature difference of the plates is 
AT; one plate having the temperature To-AT/2 and 
the other plate the temperature T,+AT/2. A 
Cartesian co-ordinate system with its origin mid-way 

between the plates is constructed such that x is 
parallel to gravity, y is across the plates and z is 
perpendicular to the plates. The corresponding fluid 
velocities are u, v and w. It is well known that, 

provided the Grashof number (Gr = gbATH3/v2) is 
larger than zero, an imbalance between pressure and 
gravity forces causes fluid motion to always exist. At 
low Gr, this motion is described as a base flow, being 
cubic in z and independent of x and y. The 
corresponding temperature is linear in z and heat 

THIS paper deals with the stability of the conduction transfer is by conduction only (hence the regime 
regime in a vertical infinite layer of fluid. Figure 1 name). At sufficiently large Gr, the conduction 
shows the problem configuration. The fluid is regime becomes unstable and suffers a transition to a 
contained between two parallel, flat, isothermal, rigid multicellular convection regime. This transition is 
plates of essentially infinite area, separated by the subject of the present paper. 
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It is generally accepted that the multicellular 
convection regime, at least near the point of 
transition from the conduction regime, is a com- 
bination of the base flow and rolls whose axes are in 
the y direction. These rolls are termed transverse 
rolls and are independent of the J position. This 

paper deals only with transitions to steady rolls. For 
the stability analysis, the variables w and tempera- 

ture, T, are therefore assumed to have the forms: 

For Pr = 0, Gr, and LX((. were found to be 793O.I and 
2.70. respectively. The a, was shown to increase to 
2.8 at Pr = 12.7. A point of similarity between the 
theoretical results of the various workers was that for 
Pr > 1 more terms were required in the Galerkin 

approximations in order to achieve convergence. 
The present paper reports on a study initiated for 

two purposes: 

(a) To find an alternate solution technique to the 

Galerkin method in order to simplify the stability 
analysis ; and 

w = W(z) exp(ia.u). (la) 

and 

T = Q(z) exp(ia.u), (lb) 

where i is the imaginary constant and a is the spatial 

wavenumber. Following arguments such as those 

presented by Korpela et al. [l], the following 
equations, which govern the transition point, are 

obtained : 

(D2 -a’)’ W- iaGr DB 

+I ia3%(z3-i)+iaGrz IW 

Gr 
-iz - 

6 

and 

(2b) 

with the boundary conditions 

H= W=DW=O at I= -&l/2. (2c) 

In the above equations, D = d/dz, z is non- 
dimensionalized with H, W with v/H and T with AT. 

Pr is the Prandtl number, ~‘/ti. 

Many thermofluid stability problems to date (a 

notable exception being the horizontal (Binard) 
problem (Pellew and Southwell [6]) and its exten- 

sion to longitudinal rolls (Birikh et ul. [7]) for which 
simple exponential solutions are valid) have been 
solved using the Galerkin technique. This method 

involves choosing functional forms (which satisfy the 
boundary conditions) for Wand 0. expressing W and 
0 as series of these functional forms, substituting 
these expressions for W and 0 into equations (2). 
orthogonalizing the equations with respect to the 
functional forms, and iteratively solving the resultant 

set of homogeneous equations by choosing Pr and x 
and finding the Gr which makes the determinant of 
the equations zero. The usual functional forms are 

those due to Harris and Reid [8] : 

The first detailed treatment of this transition 

problem was by Rudakov [2]. Following the earlier 
work of Birikh [3], who treated the problem as an 
isothermal flow, Rudakov determined the stability 

condition using the Galerkin method. Rudakov 
concluded that the critical Grashof number, Gr,, (i.e., 
the Gr at which the transition to the transverse roll 
regime occurs) was a function of Pr, ranging over 

7360 d Gr, < 8160t for 0 < Pr < 10. The critical 

wavenumber was found to be only weakly dependent 
on Pr, having the approximate value a, = 2.8. Vest 
and Arpaci [4] found experimentally that for air Gr, 
= 87OOk 10% and a, = 2.74. Gersuni and Zhukovit- 
skii [S] have presented tabular results of Gr, and a, 
in their text on convective stability. For Pr = 0.2, 1 
and 5 they found Gr, = 7520, 7952 and 7840, and a, 
= 2.70, 2.84 and 2.80, respectively. Korpela et al. [ 11, 
also using a Galerkin method, calculated the stability and 

criterion over a range of Prs. Gr, was found to be Pr 
dependent, with tabulated results given for a, = 2.65. 

and 

where 

(b) to calculate highly converged values of Gr, 
and rr and investigate their behaviour over a range 

of Pr. 

The motivation for the first purpose may be found 
by inspecting equations (2). These equations are a 
system of ordinary differential equations with vari- 

able coefficients. As such, they are solvable by the 
power series method without the necessity of 
resorting to a Galerkin method. The second purpose 

is motivated on two counts, first as a means of 
checking the success of the first purpose, and second 
for its intrinsic scientific value. 

THE POWER SERIES METHOD 

W or $1’ = C u,C,(z) + &S,,(Z), 
,a= I 

(3a) 

0 = 1 4, sin,, ko,z) + ie, cos (lb,:), (Jb) 
,,= 1 

cash (1,:) 
C,,(I) = ~ 

cos (i,,:) 

cash ($) cos (+i.,,) ’ 
(4a 1 

sinh(p,,z) sin&z) 
S,(z) = 7 - ~ 

smh()p,) sin (3/l,,) ’ 
(4b) 

tAll values of Gr and c( have been transformed to agree 
with the nondimensionalizing scheme adopted in the 
present paper. 

tMost investigators use the stream function ~1, rather 
than W. 
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and 1,, ,u,, w, and $,, are chosen to satisfy the four 
boundary conditions on W and the two boundary 
conditions on B respectively. The orthogonalization of 
equations (2),aftersubstitutionofequations (3)and (4), 
is not straightforward as it involves the integration of 
complicated functions, some involving multiples of 
hyperbolic, trigonometric and 2”’ terms. This com- 
plexity makes the computations involving the homo- 
geneous equations algebraically cumbersome. In 
addition, previous investigators solved from 24th to 
40th order determinants in order to determine the Gr, 
to 4 or 5 figures. The complexity and computer time 
required by the Galerkin method provided the impetus 
for the search for a simpler technique. 

The system of equations involved in this problem 
should be tractable by the power series method. This 
method, which has found great success in such cases 
as Bessel’s equations, is the classical method for 
solving ordinary differential equations with variable 
coefficients. To the author’s knowledge, the only 
other application of the power series method to a 
thermofluid stability problem was by Sparrow et al. 
[9], where they treated the effect of a nonlinear 
temperature profile on the stability criteria in a 
horizontal fluid layer. The present technique of 
applying the method is, of necessity, more sophisti- 
cated, since the present problem is considerably 
more complicated. The method depends upon ex- 
panding the variables in simple power series, sub- 
stituting into the equations, equating the collected 
coefficients of like powers of the independent 
variable to zero, and thereby discovering a recursion 
formula for the coefficients of the series. A number of 
coefficients remain arbitrary (later chosen to satisfy 
boundary conditions) and the recursion formula is 
used to write all coefficients in terms of the arbitrary 
coefficients. This results in a solution involving only 
the arbitrary coefficients multiplied by power series 
of the independent variable. Classical power series 
solutions involved finding quite simple recursion 
formulae which were suitable to manual manipu- 
lation. Very complicated equations were not tract- 
able to large numbers of terms because the as- 
sociated series did not lend themselves to finding 
explicit recursion formulae. This requirement for 
explicit definitions of recursion formulae is no longer 
necessary, at least when the problem is computer 
solved. Below, a technique is described for solving 
the vertical layer problem by means of the power 
series method. Although the technique is demon- 
strated for this particular problem, it should be 
applicable to many linear stability problems. 

In the power series method, variables W and 8 are 
assumed to satisfy the series 

W = f, bkzk-1, (5a) 

and 

e = f CkZk_‘, (5b) 
k=l 

where, in general, the coefficients b, and ck are 
complex constants. These equations are differen- 
tiated and substituted into equations (2a) and (2b). On 
collecting terms of equal powers of z and setting 
these collections to zero, the following equations 
result : 

bl E b, c b, E b, E cl = c2 = arbitrary, (6a) 

for k > 4, 

1 
“=(k_l)(k-2)(k_3)(k_4) 2uZ(k-3)(k-4)bk-z 

-a4bk_4+iCtGr(k-4)ck-3-Gr q b,_, A,,,_, 

- $-ia+;(k-6)(k-7) bk-5A1,k-5 
! 

iu 
$24 (k-4)(k-5)b,-, 

11 
, 

and fork > 2: 

1 
ck= tk_ l~~k_2~ ~2ck-,-PJ+k-, 

+iaPr~ck_,A,,k_,-i~Pr~ck_3AI,k_3 , 1 
where 

(6~) 

and 

Anm = 0, m < n, (6d) 

A”, = 1, m > n. (6e) 

It may be seen therefore, that each higher order 
constant is expressed in terms of lower order 
constants, which in turn may be expressed in terms 
of even lower order constants, and ultimately all 
constants may be expressed in terms of the arbitrary 
constants. 

The solution of the stability problem depends on 
finding b,, b,, b,, b,, cl and c2. These six constants 
may be expressed in the form of a general solution 
vector 

G, = (b,, b,, b3, b,, cl, ~2). (7) 

All the constants may then be expressed in terms of 
particular solution vectors, B,, for the b, constants 
and C,, for the ck constants, such that 

b, = B,,G,, @a) 

and 

ck = GknGn, (gb) 

where the summation on repeated indices convection 
applies. For example, 

b, = (LO, 0, 0, (40). @,, b,, b,, b,, cl, c2) (94 

or 

B,, = (LO, 0, (40, Ok WI 
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while 

cl = (O,O,O, 0, l, O).(b,, b,, b,, b,, cr, CJ (SC) 

or 

determinant of this set is zero. The elements of the 
determinant are given by 

A,, = f &,(1/2)k-‘, (12a) 
k=l 

C,” = (O,O, O,O, l, 0). (9d) A,, = ; Bkn(- l/2)k-‘, 
k=l 

It follows that the first four B,, and the first two C,, 

vectors are unit vectors, for k > 4, 

1 

A3” = ; B,,(k- l)(l/2)km’. 
k=l 

Bkn = (k- l)(k-2)(k-3)(k-4) A,, = f B,,(k- l)(- l/Z)“-‘, 
k=l 

X 2aZ(k-3)(k-4)B,_,,,-a4B,_,,, 
I 

+icrGr(k-4)C,_,,,-Gr $B,_,,,*,,,-, 

A,, = f Ck,t1/2)k-‘, 
k=l 

Aen = f Ck,(-1/2)k-1. 
k=l 

- g--ia+F(k-@(k-7) B,_,+,A,,,_, 
! 

+; (k-4)(k-5)B,-3.R’,k-3 Ii 3 Wa) 

and for k > 2, 

I 
ckn = tk_ l)tk_2) Q2Ck-2,n-PrBk-2,n 

+ictPr F Ck-5,nA,,k-, 

-ictPr g Ck-3,nAl,k-3 (lob) 

The B,, and C,, may therefore be found inde- 

pendently of knowing G,. 

(12b) 

(l2c) 

(l2d) 

We) 

(l2f) 

The solution of the stability problem is now 

straightforward. For particular LX and Pr, a Gr is 
assumed, B,, and C,, are found, the A,, are found, 

)&I is determined, a correction on Gr is calculated 
and the procedure is repeated until the determinant 
is zero to within some prescribed limit. This 

procedure may be used to search for the a that 
results in the lowest value of Gr. The corresponding 
tl and Gr are then CI, and Gr,. 

COMPARISON OF THE POWER SERIES 
METHOD WITH THE GALERKIN METHOD 

OF PREVIOUS WORKERS 

The power series method was used to obtain 
solutions which could be compared directly with 
results of Korpela et al. [2]. The data for c( = 2.65 
and various Pr’s are presented in Table 1 for a range 

of number of terms, N, used in the power series. In 

Table 1. Convergence of Gr for a = 2.65 

Pr N= 10 20 30 40 50 60 70 80 

0.001 5255.860 6332.856 8633.156 7913.691 7919.772 7919.743 7919.743 19 19.743 
0.01 5214.586 6296.344 8385.500 7805.845 7811.077 7811.053 7811.053 7811.053 
0.1 4920.174 6020.062 7705.900 7351.725 7355.020 7355.006 7355.006 7355.006 
1.0 7955.360 7989.764 7989.525 7989.525 7989.525 

N= 120 130 140 150 160 
10.0 - 7873.02 7873.42 7898.23 7898.23 

By means of equations (8), equations (5) may be 

rewritten as 

W = z BknGnzk-‘, 
k=l 

(1 la) 

and 

0 = f Ck,G,zk-‘. (lib) 
k=l 

The six homogeneous boundary conditions (equa- 
tions (2~)) may now be used to generate a set of six 
homogeneous equations for the six elements of the 
vector G,. A solution exists if and only if the 

most cases Gr was iterated, using a 
Newton-Raphson technique, until the change in Gr. 
due to the error in )A,,,,) = 0, was less than the 
fraction 10e8. Generally, 4 figure exactness in Gr was 
attained with N = 50, for Pr < 1.0. Convergence in 
Gr to 7 figures required a maximum of 70 terms in 
these cases. For Pr = 10.0, the required N was 
significantly increased, a difficulty noted by previous 
workers. As well, convergence to 7 figures was 
difficult to attain, the sixth figure often varying. In 
this case, the Gr was iterated only until the fractional 
change was 1 O-6. 

Table 2 shows a comparison between the present 
results and those of Korpela et al. [I]. Except in the 
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Table 2. Comparison with Korpela et al. [l] 

Pr a Present Korpela et al. 

0.001 2.65 7919.743 7920 
0.01 2.65 7811.053 7811 
0.1 2.65 7355.006 7355 
1.0 2.65 7989.525 7989 

10.0 2.65 7898.23 7898 

case of Pr = 1.0, the present results agree to the 
exactness given by those workers. The disagreement 
for Pr = 1.0 is in the last place only (difference of 
< lo-*%). This excellent agreement was interpreted 
as validation of the power series method. 

The application of the Galerkin method to the 
problem at hand results in the evaluation of 56 (see 
Vest [lo]) integrals of the form 

i 

‘l/2 

z”‘FG dz, 
-112 

where F and G are either trigonometric or hyper- 
bolic functions. These integrals may be evaluated 
exactly, however, the procedure is tedious with the 
results being, in some cases, complicated formulae. 
An alternative is numerical integration, however, 
since the functions F and G contain the constants A,, 
pn, w, and Ic/, (as can be seen from equations (4)), the 
numerical integrations must be performed for all 
products zmFG which are not known to be ortho- 
gonal. If N terms are used in the approximating 
functions, at the very least 56 N integrals must be 
evaluated. These integrals may then be stored in the 
computer for recall when needed. However, a 
sophisticated bookkeeping system is needed to 
ensure that the proper integral is inserted at the 
proper place in the orthogonalized equations. Con- 
trast the above procedure with the programming 
steps in the power series method. After defining the 
six unit vectors (B1,, B2,, Bin, Bbn, Cln, C,,) 

equations (10) may be solved sequentially for the 
remaining Bkn and C,,. The matrix of the equations, 
A mn, may then be found from equations (13). Both 
steps may be accomplished by using a single pair of 
nested do-loops. The simplicity of the programming 
required is manifest in the fact that the actual 
solution part of the program (not considering I/O, 
determinant solvers, etc.) required only 40 assign- 
ment statements of which only 5 required more than 
5 mathematical operations. 

The computer time required to solve the set of 
homogeneous equations is essentially controlled, in 
the Galerkin method, by the time required to solve 
the determinant. In the power series method, the 
determinant is always 6th order, a determinant 
which requires little time to solve, and the speed of 
solution is governed by the time required to find the 
Bkn, C,, and A,,. Generally, 50 terms were required 
in the power series method to obtain the same 
exactness as Korpela et al. achieved with 7 terms 
(hence a 28th order determinant). Computer time to 
solve a determinant increases as the determinant 

order raised to a power between 2 and 3. Increasing 
the exactness of the solution requires increasing the 
order of the determinant; therefore, in a Galerkin 
solution, computer time would increase rapidly if 
more exactness was required. The calculation of 50 
terms in the power series method required gene- 
ration of 606 algebraically simple terms (100 specific 
solution vectors of six terms each plus the six terms 
of A,,). Computer time to incorporate more terms in 
the series increases linearly with N (an indication of 
how exactness increases with N is gained by 
considering that, for Pr < 1.0, convergence in Gr, to 
12 or 13 figures was obtained with N < 90). The set 
up and solution of one determinant by the power 
series method required approximately 0.0064 s/term 
(using a CDC6400, Cyber 172 computer). The total 
time required to solve fcr Gr, and ~1, at 60 values of 
Pr (0.00001 < Pr < 10) was 781 s, just over 13 min. 
This time included the search time to find the c( 
which produced a minimum in Gr for a particular 
Pr. 

THE STABILITY RESULTS 

The power series method was used to determine 
essentially exact values of the stability condition 
implied by equations (2). Values of Gr, and ~1, were 
calculated for 60 values of Pr in the range 0.00001 
< Pr < 10.0 and separately for the limiting case Pr 

= 0. It was found that in general, Gr, had to be 
calculated to 7 figures in order to find tl, to 4 figures. 
Sample values are given in the Appendix, with the 
results being summarized in Fig. 2. Also plotted in 
Fig. 2 are selected results from Rudakov [2], and the 
tabulated results of Gershuni and Zhukovitskii [5] 
and Korpela et al. [l]. Generally, the agreement is 
good. The disagreement for Pr > 1 is probably 
attributable to the use of too few terms in the 
Galerkin approximation by previous workers. The 
experimental result of Vest and Arpaci [4], Gr, 

= 8700f lo%, agrees with the present value (for air) 
of approximately 8038. The agreement between the 
present u, values and those of previous workers is 
fair. Rudakov states that CI, E 2.8 and a constant, 
while Korpela et a[. show GI, to vary from 2.7 to 2.8. 
In actuality, CI, varies in a fairly complicated manner, 
from a low of 2.688 to a high of 2.812. The tl, values 
of Gershuni and Zhukovitskii agree with the present 
results to within N 1%. The value of c(, found 
experimentally for air by Vest and Arpaci was 2.74, 
which differs by only 2.5% from the presently 
predicted value of 2.810. Since t(, and Gr, are 
interdependent, the disagreement in tl,, between the 
present results and those of some previous works, 
undoubtedly accounts for some of the disagreement 
in Gr,. 

The limiting case of Pr = 0 was solved separately 
by taking the limiting form of equations (2) and 
programming a separate solution. Gr, and c(, were 
found to have the values 7930.055 and 2.688 
respectively. These results are in essential agreement 
with the results of Korpela et al. [l]. 
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FIG. 2. The critical conditions (- Present results; 0 Gr, [2] ; A Gr, [5]; A a, [5] ; 0 Gr, [ 11). 

BEHAVIOUR OF Gr, AND a, WITH Pr 

A great advantage of the power series method is 

the ease with which the resultant series may be 
manipulated. Using this advantage, a preliminary 
investigation into the nature of the Gr, and a, 
dependence on Pr was performed. The constants of 
the power series are in general complex numbers. 
For the vertical layer, the solution is a combination 
of even and odd terms. Since the solution is only 
obtainable to within an arbitrary constant (the 

equations are homogeneous), c3 was given the value 
1.0 to make the even part of the solution real. If the 
solutions for 0 and Ware denoted by 

and 

8 = p + iq, (13a) 

w = s + it, (13b) 

then the real part of T and Ware given by equations 

(1) as 

Re(T) = pcosar,-qsinar,, (Ida) 

and 

Re( W) = s cos ar, - t sin arl , (lab) 

where p and s are even solutions and q and t are odd. 
Figure 2 indicates four separate regions of Gr, 

dependence on Pr. The first region extends over the 
range 0 < Pr d 0.1, and is characterized by a 

decrease of Gr, with Pr. The second region extends 
over the range 0.1 < Pr < 0.5, and is characterized 

by a sharp increase of Gr, with Pr. The third region 
extends over the range 0.5 < Pr < 2.3, and is 

characterized by a sharp decrease in Gr, with Pr. The 
final region extends from Pr = 2.3 to Pr = 10.0 (and 
presumably infinity) for which Gr, increases slowly 
with Pr and appears to be approaching an asym- 

ptotic value.? Representative profiles of p, q, s and t 
were calculated for each region and are presented in 
Fig. 3. The profiles are normalized with the moduli 
of equations (13a) and (13b). The magnitudes and 
ratio of the normalization factors for 8 and W are 

plotted in Fig. 4. 
With reference to Fig. 3, the following points are 

considered. For Pr = 0.01, q and t are smaller than p 
and s respectively, and are in phase with each other. 
However, at Pr = 0.07, q has suffered a reversal now 
being out of phase with t. At Pr = 0.1, the relative 
magnitude of q has increased. The decrease in Gr, 

with Pr is therefore associated with a decrease in the 
relative magnitude of q. The minima at Pr = 0.1 is 
probably associated with the reversal in the phase of 
q. At Pr = 0.5, noticeable changes in the shape of p 
are manifest, p being thinned and taking on a much 

more peaked appearance. In addition s has thick- 
ened. The increase in Gr,. with Pr is therefore 
associated with an increase in the magnitude of y. 

_ 

*It is worth noting here that, for Pr > 12.7, Korpela er 
al. have shown that the transition to convectlon results in 
an unsteady motion. Transition values for steady motions 
are therefore of little Interest for Pr > 12.7. 
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3. Profiles for B and W (-p and s, ------q and t). 
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FIG. 4. Scales for 0 and W (-Ratio 0/W) 

The maxima at Pr = 0.5 is probably associated with 
the change in shape of the profiles of both p and s. At 
Pr = 1.5, s has become blunt nosed while p has 
become very pointed. A reversal in sign of all profiles 
occurs between Pr = 1.5 and Pr = 2.0. The decrease 
in Gr,. with Pr is therefore associated with a 
continued change in profile shape. The minima at Pr 

= 2.0 is probably associated with the sign reversal of 

the profiles. For Pr = 10.0, p has become clearly 
trimodal and s has become bimodal. This plot 
plainly shows why convergence deteriorates for Pr 

> 1; the curves become so complex as to require a 
large number of terms to approximate their shapes. 

Figure 4 shows the behaviour of the scaling factors 
for 0 and W and the ratio of these factors (0/W) for a 
range of Pr. It must be kept in mind that the 
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absolute magnitude of the scale factors has no direct 
physical significance. The magnitude is a purely 
mathematical result caused by arbitrarily setting c3 
to 1. However, it is probably significant that the 
discontinuity observed at Pr = 1.75, in both the 0 
and V, curves, is the same point at which the profiles 
reverse direction. Although the individual scale 
factors exhibit discontinuities, the ratio 0/W is well 
behaved (as would be expected since here the 
arbitrarity of the scales would cancel out). It must be 
reemphasized that the scales have arbitrary magni- 
tudes and no further conclusions as to the signific- 
ance of the discontinuities should be made except to 
suggest that a non-linear analysis of the problem, to 
determine actual magnitudes, and collection of 
experimental data at Pr = 1.75, may yield interesting 
results. 

In general, it may be said that the variation of c(, 
with Pr parallels that of Gr, with Pr. The obser- 
vation that extrema of the two curves in Fig. 2 do 
not exactly coincide, and that there is some variation 
in behaviour, is probably due to that fact that c( 
enters equations (2) with various powers (up to a4), 
whereas Gr enters only with the power 1. 

The power series solution may also be used to 
generate profiles of the derivatives of ~9 and W. Since 
power series are easily manipulated by digital 
computers, these profiles may be calculated simply 
and quickly. 

CONCLUSIONS 

The conclusions of the present study are as 
follows : 

1. The power series method offers a simple, 
accurate and fast alternative to the Galerkin method 
for the solution of stability problems. Due to the 
programming ease of the power series method, it 
should be considered as the primary technique for 
solving stability problems involving equations with 
non-constant coefficients. More complicated tech- 
niques should be used only if this method proves 
inadequate. 

2. By means of the power series method, essen- 
tially exact solutions of Gr, and a0 as functions of 
Pr, have been found for the vertical layer problem. 

3. The variation of the Gr, and a, data with Pr 

has been associated with various changes in the 
relative importance and sign of the even and odd 
parts of T and W. 

4. A very interesting discontinuity in the calcu- 
lated “magnitudes” of f3 and W suggests more 
theoretical and experimental work should be done 
for fluids with Pr E 1.75. 
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APPENDIX 

Critical data 

Pr a, Gr, 

0.00001 
0.00005 

0.0001 
0.0003 
0.0005 

0.001 
0.003 
0.005 

0.01 
0.02 
0.03 
0.05 
0.07 

0.10 
0.30 
0.50 
0.70 

1.0 
1.5 
2.0 
2.3 
3.0 
5.0 
7.0 

10.0 

2.688 1929.923 
2.688 7929.394 

2.688 7928.733 
2.688 7926.094 
2.689 7923.463 

2.689 7916.920 
2.690 7891.247 
2.692 1866.357 

2695 1807.448 
2.699 7703.050 
2.704 7615.100 
2.708 7482.533 
2.709 7399.389 

2.707 7349.516 
2.729 7896.585 
2.789 8093.723 
2.810 8041.422 

2.808 7940.235 
2.790 7866.340 
2.179 7850.043 
2.115 7848.831 
2.771 7852.483 
2.768 7863.939 
2.767 7868.426 

2.761 7870.43 
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SUR LA TRANSITION VERS LES ROULEAUX TRANSVERSES DANS UNE COUCHE 
FLUIDE VERTICALE ET INFINIE-UNE SOLUTION EN SERIE DE PUISSANCE 

Resume-On trouve, a l’aide d’une methode en serie de puissance, le critere qui gouverne la transition 
entre le regime de conduction et le regime des rouleaux transverses dans une couche fluide infinie et 
verticale. Les valeurs calcultes sont en bon agrement avec les r&mats prectdemment publies. On 
prtsente les resultats concernant la variation de Gr, et de rc en fonction de Pr. On trouve un 

comportement anormal a Pr = I ,75. 

0 nEPEXOAE K nOnEPEYHbIM BAJIAM B EECKOHEqHOM BEPTMKAJILHOM 
CJIOE lKHjJK0CTl-i. PEIIIEHME METOAOM CTEI-IEHHLIX PJIaOB 

AHHOTBUIUI- MeronoM CTeneHHbIX pillOB HaheH KpiTepHfi, O~pe~eJmOIUHii nepexon 0T pemMa 

TeNlOllpOBOJlHOCTH K FCUHMy IlOtlePe'tHblX BWIOB B BepTHKaJlbHOM 6eCKOHeYHOM CJlOe XWJXOCTW. 

nOKa3aH0, 9TO PaCCWTaHHbIe 3Ha'IeHHR COrJlaCyfOTCSl C PHee Olly6JIHKOBaHHblMl4 IlaHHbtMH. nPeA- 

CTaBJIeHbl Pe3yJlbTaTbt II0 3aBHCWMOCTW Gr, H G(, OT Pr. 06Hap)'lKeHO aHOMaJlbHOe nOBeJleHHe llpH 

tiBER DEN tiBERGANG ZU QUERLAUFENDEN WALZEN IN EINER UNENDLICH 
AUSGEDEHNTEN VERTIKALEN FLUIDSCHICHT-EINE POTENZREIHENLGSUNG 

Zusammenfaaaung-Mittels einer Potenzreihenmethode wird das Kriterium entwicklet, das in einer 
unendlich ausgedhnten vertikalen Fluidschicht den Ubergang von den Gesetzmagigkeiten der 
Warmeleitung zu den Gesetzmagigkeiten der querlaufenden Walze beschreibt. Es wird gezeigt, dal3 die 
berechneten Werte mit friiher veroffentlichten Ergebnissen iibereinstimmen. Erkenntnisse iiber die 
Anderung von Gr, und %c mit Pr werden dargestellt. Bei Pr ‘c I,75 wurde ein ungewohnliches Verhalten 

festgestellt. 


